stepwise regression - definição. O que é stepwise regression. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é stepwise regression - definição


Stepwise regression         
METHOD OF STATISTICAL FACTOR ANALYSIS
Forward selection; Backward elimination; Unsupervised forward selection; Unsupervised Forward Selection; Stagewise regression; Step-wise regression; Stepwise Regression
In statistics, stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out by an automatic procedure.Efroymson,M.
Software regression         
SOFTWARE BUG THAT BREAKS PREVIOUSLY WORKING FUNCTIONALITY
Regression bugs; Regression bug; Regression (programming); Regression detection; Bug regression; Software performance regression
A software regression is a type of software bug where a feature that has worked before stops working. This may happen after changes are applied to the software's source code, including the addition of new features and bug fixes.
Nonparametric regression         
  •  Example of a curve (red line) fit to a small data set (black points) with nonparametric regression using a Gaussian kernel smoother. The pink shaded area illustrates the kernel function applied to obtain an estimate of y for a given value of x. The kernel function defines the weight given to each data point in producing the estimate for a target point.
CATEGORY OF REGRESSION ANALYSIS
Nonparametric multiplicative regression; Non-parametric regression; Nonparametric Regression
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric form is assumed for the relationship between predictors and dependent variable.